Wednesday, March 24, 2010

ANAGLYPH

Anaglyph images are used to provide a stereoscopic 3D effect, when viewed with 2 color glasses (each lens a chromatically opposite color, usually RED and CYAN). Images are made up of two color layers, superimposed, but offset with respect to each other to produce a depth effect. Usually the main subject is in the center, while the foreground and background are shifted laterally in opposite directions. The picture contains two differently filtered colored images, one for each eye. When viewed through the "color coded" "anaglyph glasses", they reveal an integrated stereoscopic image. The visual cortex of the brain fuses this into perception of a three dimensional scene or composition.

Anaglyph images have seen a recent resurgence due to the presentation of images and video on the internet, Blue-ray HD discs, CDs, and even in print. Low cost paper frames or plastic-framed glasses hold accurate color filters that typically, after 2002, make use of all 3 primary colors. The current norm is red and cyan, with red being used for the left channel. The cheaper filter material used in the monochromatic past dictated red and blue for convenience and cost. There is a material improvement of full color images, with the cyan filter, especially for accurate skin tones.Video games, theatrical films, and DVDs can be shown in the anaglyph 3D process. Practical images, for science or design, where depth perception is useful, include the presentation of full scale and microscopic stereographic images. Examples from NASA include Mars Rover imaging, and the solar investigation, called STEREO, which uses two orbital vehicles to obtain the 3D images of the sun. Other applications include geological illustrations by the USGS, and various online museum objects. A recent application is for stereo imaging of the heart using 3D ultra-sound with plastic red/cyan glasses.Anaglyph images are much easier to view than either parallel (diverging) or crossed-view pairs stereograms. However, these side-by-side types offer bright and accurate color rendering, not easily achieved with anaglyphs. Recently, cross-view prismatic glasses with adjustable masking have appeared, that offer a wider image on the new HD video and computer monitors.

The first method to produce anaglyph images was developed 1853 by Wilhelm Rollmann, a German, in Leipzig.

How anaglyph works
Viewing anaglyphs through appropriately colored glasses results in each eye seeing a slightly different picture. In a red-blue anaglyph, for instance, the eye covered by the red filter sees the red parts of the image as "white", and the blue parts as "black" (with the brain providing some adaption for color); the eye covered by the blue filter perceives the opposite effect. True white or true black areas are perceived the same by each eye. The brain blends together the image it receives from each eye, and interprets the differences as being the result of different distances. This creates a normal stereograph image without requiring the viewer to cross his or her eyes.

In comics
3-D Glasses distributed with special Batman comic books between 1953 and 1964 These techniques have been used to produce 3-dimensional comic books, mostly during the early 1950s, using carefully constructed line drawings printed in colors appropriate to the filter glasses provided. The material presented were typically short graphic novels of a war story, horror, or crime/detective nature similar in content to some modern Japanese manga. These genres were largely eliminated in the US by the rise of the Comics Code Authority. Anaglyphed images were of little interest for use in the remaining comics, which emphasized bright and colorful images, unsuited for use with the viewing and production methods available at the time, which were usually red-green rather than red-cyan.

Today, there are more advanced solutions for 3D imaging available, like shutter glasses together with fast monitors. These solutions are already extensively used in science. Still, anaglyph images provide a cheap and comfortable way to view scientific visualizations.

1 comment: